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Abstract

Background: Antibiotic therapy targeting chronic mycobacterial disease is often ineffective due
to problems with the emergence of drug resistance and non-replicating persistent intracellular
antibiotic resistant phenotypes. Strategies which include agents able to enhance host cell killing
mechanisms could represent an alternative to conventional methods with the potential for host
clearance if active against dormant phenotypes. Investigations of agents with potential activity
against non-replicating mycobacteria however are restricted due to a need for assays that can
assess bacterial viability without having to culture.

Results: This study describes the development and use of a prel6S ribosomal gene RNA/DNA
ratio viability assay which is independent of the need for culture, supported by a novel thin layer
accelerated mycobacterial colony forming method for determining viability and culturability of MAP
in intracellular environments. We describe the use of these tools to demonstrate intracellular
killing activity of a novel rhodanine agent (D157070) against the intracellular pathogen
Mycobacterium avium subspecies paratuberculosis (MAP) and show that the culturability of MAP
decreases relative to its viability on intracellular entry suggesting the induction of a non-culturable
phenotype. We further demonstrate that D 157070, although having no direct activity against the
culturability of extracellular MAP, can bind to cultured MAP cells and has significant influence on
the MAP transcriptome, particularly with respect of 8- associated genes. D157070 is shown to be
taken up by bovine and human cells and able to enhance host cell killing, as measured by significant
decreases in both culturability and viability of intracellular MAP.

Conclusions: This work suggests that prel6srRNA gene ratios represent a viable method for
studying MAP viability. In addition, the rhodanine agent D 157070 tested is non-toxic and enhances
cell killing activity against both growing and latent MAP phenotypes.

Background host intracellular killing and facilitating long term intrac-
The pathogenic strategy of bacteria associated with  ellular persistence [1]. Some of these pathogens also have
chronic disease often progresses by the inhibition of host  the ability to convert into a viable non-replicating pheno-
innate immune mechanisms that result in activation of  type on cell entry [2]. These forms are often stable for long
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periods with altered transcriptomic turnover of cell wall
constituents [3,4]. As a consequence, the abundance of
bacterial antigens presented to the host is decreased reduc-
ing immune recognition, promoting anergy and increas-
ing intracellular longevity. Antibiotic therapy may have
limited efficacy during such chronic infective conditions,
particularly when the activity of the agent targets essential
features of replicating organisms such as cell wall bio-gen-
esis [5,6]. Chemotherapy to achieve clearance of these
chronic infections often requires prolonged treatment
regimes with the associated problems of toxicity, patient
compliance and the emergence of drug resistance.

Mpycobacterium avium subspecies paratuberculosis (MAP) is
a proven gut pathogen that is the cause of chronic enteritis
(Johne's disease JD) in many animals including sub-
human primates [7]. It can be detected and cultured from
both blood and gut tissue of up to 40% of normal humans
[8] and in some studies has be found in over 80% of
patients with Crohn's Disease (CD) [9]. MAP has the
capacity to dysregulate host immune systems, a critical
factor in the development of CD in genetically susceptible
patients [10]. In some cases of CD anti-MAP therapy using
antibiotics with enhanced activity against these organisms
has resulted in clinical remission with healing of the
inflamed gut and apparent MAP clearance [5,11]. How-
ever only a proportion of CD patients respond and the
approach is open to all the problems of bacterial latency
and the development of microbial drug resistance seen in
the treatment of chronic fibrotic lung disease due to
closely related organisms such as Mpycobacterium avium
subspecies avium [12,13]. Such chronic clinical infections
require novel chemotherapeutic approaches particularly
those in which the agent is active against non-replicating
phenotypes.

One of the mechanisms used by pathogenic mycobacteria
to inhibit intracellular killing by the host and provide a
stable environment for persistence, is through the action
of microbial alkylhydroperoxidase reductase subunit C
(AhpC) [14]. In most acidic conditions, this is a major
secreted protein and is concentrated in phagosomes
where it is active against reactive nitrogen intermediates
(RNI) derived by the host from nitric oxide [15]. Activity
of the AhpC gene product, which in MAP is encoded by
MAP1589¢, requires it to be in a reduced form [16]. This
is achieved through a pathogen-derived renewal system
involving an oxidation/reduction cascade with three other
genes called ahpD (MAP1588c), dlaT (MAP1956) and IpdA
(MAP3424). Previous work has shown that this cascade
can be irreversibly inhibited by the binding of a group of
rhodanine derivatives to the DIaT component found in
the mycobacterial cell wall [17]. These chemotherapeutic
agents have in vivo activity against wild type Mycobacterium
tuberculosis (MTB) but are inactive against DIaT knockout
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MTB mutants and are thought to act by enhancing the
normal killing capacity of the host

In this work we have investigated the activity of one of
these rhodanine agents (D157070) in enhancing the
intracellular killing of MAP. D157070 is a propanolic
ester derivative of an active thodanine component (3-
((2)-5-((5-(2-chlorophenyl)furan-2-yl)methylene)-4-

oxo-2-thioxothiazolidin-3-yl)benzoic acid) modified to
potentiate phagosomal cell entry [17]. To measure the
effect of D157070 on intracellular mycobacterial viability
we have developed an assay which is independent of the
need for culture supported by a novel thin layer acceler-
ated MAP colony forming culture method. Using these
assays we show that the culturability of intracellular MAP
is much lower than its viability, suggesting the induction
of a non-culturable phenotype on cell entry. We also show
that D157070 treatment of MAP in vitro has significant
influence on the MAP transcriptome but does not reduce
viability. In contrast D157070 treatment of intracellular
MAP causes decreases in both culturability and overall
viability suggesting that D157070 is active within cells
against both actively growing and latent MAP phenotypes.

Results

D157070 has no antibacterial activity in vitro against MAP
as measured by MAP culturability and viability assays
Comparing culture samples of total cfu with estimations
derived from pre16Sr DNA qPCR at Day 0 (Figure 1A
&1B), the thin layer method showed growth was possible
in more than 80% of organisms present in an exponen-
tially growing liquid culture inoculum. Results were avail-
able more rapidly than conventional methods with
micro-colonies visible at 14 days (samples read at four
weeks, showed no significant increase in cfu). An estima-
tion of the proportion of large and small colonies was
made in each sample which showed the degree of clump-
ing remained consistent throughout the experiment at
around 5% (data not shown).

The pre16Sr RNA/DNA ratio was found to be approxi-
mately 1:1 in exponential growth culture and did not
appear to fluctuate significantly as growth occurred sug-
gesting that expression was constant during this growth
phase. As expected, treatment of cultures with an antibi-
otic (Amikacin) immediately caused a significant decrease
in both cfu and ribosomal turnover with both becoming
effectively negative after 4 days treatment (Figure 1B
&1C). This suggested that viability and culturability were
being effectively assayed. Introduction of MAP into media
that is not supportive of MAP growth (RPMI), after an ini-
tial lag phase, resulted in a decrease in ribosomal turnover
(Figure 1C) and proportionately a significantly larger
decrease in culturability (Figure 1B) suggesting that these
assays were not measuring identical phenomena.
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Figure |

Prel 6Sr DNA copy number, Culture (cfu), and Viability curves of MAP K10 in media. MAP K10 growth curves
(average of three experiments) in RPMI medium with and without D 157070 treatment and in RAF medium, with or without
D157070 treatment or Amikacin treatment plotted as A) copies of prel6Sr DNA B) colony forming units C) prel6Sr RNA/

DNA ratio.

Culture of MAP-K10 in control RAF medium showed a
steady increase in growth as expected. Proportionate
increases in cfu and pre16Sr DNA copy number were con-
sistent with a doubling of the initial inoculum over the 7
day experiment. Ribosomal turnover ratio however
remained relatively constant throughout. MAP growth
was not observed in the RPMI medium with the prel6Sr
DNA copy number remaining constant. There was a
steady drop in culturability after 1 day but a significant
decrease in ribosomal turnover (RNA/DNA prel6Sr ratio)
did not occur until 7 days (Figure 1C), suggesting that cul-
turability was lost prior to viability. Treatment with
D157070 showed no significant differences in either cul-
turability or ribosomal turnover in both RAF and RPMI

media suggesting that this agent is not directly active
towards the viability of MAP in vitro. All D157070 treated
MAP cultures retained the orange pigmentation associ-
ated with the agent, suggesting cell wall binding of the
drug had occurred.

D157070 treatment in vitro induces transient increases in
expression of MAP genes associated with oL but not the
ahpC oxidation/reduction cascade

MAPAC microarray analysis of in vitro MAP transcrip-
tome profiles from RAF culture treated for up to 3 days
with D157070 and compared with untreated controls
identified 63 differentially regulated MAP genes with a
significant (p < 0.05) and greater than two-fold change in
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expression between Day 0 and Day 1-3. Thirty six of these
genes were located in sequentially adjacent clusters within
the genome, representing 8 up-regulated and 7 down-reg-
ulated putative operons (Table 1). Of the 8 up-regulated
operons, homologues from genes in 3 operons are already
known to be regulated in other organisms by the 8. tran-
scription  factor (MAP1369-MAP1371; MAP2642-
MAP2644; MAP2940c-2942c¢) [18,19]. Three further up-
regulated operons were located immediately upstream to
the 8t gene (MAP4202-MAP4205; MAP4206c-MAP4207¢;
MAP4208-MAP4211) including the 8- related factor RslA
(MAP4202) suggesting that d'related control is an impor-
tant factor in MAP in vitro response to D157070. Of par-
ticular interest was also the down- regulation of a set of
mammalian cell entry genes (mcel) associated with viru-
lence (MAP3606-MAP3607) as well as the MAP katG gene
(MAP1668c) which is an essential factor involved in intra-
cellular MAP persistence. There were no significant differ-
ential changes in expression levels observed for ahpC
(MAP1589c¢) or ahpD (MAP1588c) although these were
constitutively expressed. Other genes in the AhpC oxida-
tion/reduction cascade including IpdA (MAP3424) and
the MAP homologue diaT (MAP1956) of the proposed
substrate for D157070 in MTB, were similarly unaffected.

D 157070 treatment of MAP inoculated into activated and
non activated macrophage cell cultures induces enhanced
host killing as measured by MAP culturability and viability
assays

BOMAC cell lines were fully permissive for MAP infection
and after an initial period of uptake, rapid growth of MAP
occurred which peaked at 2 days (Figure 2A &2B). MAP
DNA increased in proportion to cfu whilst ribosomal
turnover increased transiently on cell entry but was only
minimally elevated overall. MAP infected BOMACS
treated with D157070 showed no change in cfu by Day 2
and an 80% reduction by Day 3. Prel6Sr DNA copy
number increased until Day 2 but were significantly
reduced compared with untreated controls (p = <0.001).
Ribosomal turnover fell sharply after Day 1 consistent
with loss of viability and continued to fall throughout the
length of the experiment (Figure 2C).

THP1 cell lines were pre-activated before MAP infection
and were therefore primed for MAP killing which was evi-
dent after infection. Only 30% of the initial inoculum
remained culturable at 4 days, after which the reduction in
culturability slowed (Figure 3A and 3B). Prel6Sr DNA
copy number also fell but at a significantly slower rate
than cfu resulting in 30-50% higher values relative to cfu.
The ribosomal turnover ratio per MAP cell increased ini-
tially on cell entry, peaking at 4 days (Figure 3C) suggest-
ing a differential MAP transcriptomic response to the
change in environment when compared with MAP infec-
tion into BOMAC bovine cells (Figure 2C). In striking
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contrast, prel6Sr DNA copy number, cfu and ribosomal
turnover ratios of infected THP1 cells treated with
D157070, decreased steadily and significantly faster than
untreated controls, resulting in a minimal ribosomal turn-
over with only 20% of the original inoculum being viable
or culturable by Day 7.

Discussion

The ability of slow growing mycobacterial pathogens to
adopt a non-culturable but viable phenotype is consistent
with their capacity for chronic intracellular existence. This
represents an important attribute of their pathogenicity,
providing them with a means for long term persistence
and ability to influence on the host cell whilst escaping
clearance by therapies that act on microbial cell division.
It is clear that MAP belongs to this group. It can shut down
cell division, transforming from an already very slow
growing organism into one in a state of latency [20]. This
is particularly evident in human MAP infection where
changes in the cell wall, low microbial loads and uncul-
turable phenotypes predominate [2,3]. These phenotypes
are associated with major alterations in transcriptional
activity although as yet the triggers for them are not
known. In MTB they are associated with the response to
hypoxia [21,22].

Studies using rapidly growing pathogens would normally
regard demonstrable growth in the laboratory as the
essential indicator of viability. The existence of non-cul-
turable phenotypes of MAP create some unique experi-
mental difficulties requiring novel assays to distinguish
between the capacity for growth in vitro (defined here as
culturability) and a measure of viability that is independ-
ent of the need for culture. In this study we have addressed
this problem with the development of an optimised thin
layer culture method to determine culturability and a sep-
arate MAP-specific RNA/DNA prel6Sr copy ratio assay as
a measure of MAP ribosomal turnover and viability. Both
methods were validated using a conventional antibiotic in
vitro killing assay and showed similar rapid responses to
loss of viability. Multiple copies of the ribosomal operon
in other bacteria such as E.coli [23] ensure that in nutrient
rich media the ribosomal turnover can adapt to support
increases in growth rate. The MAP genome encodes only a
single ribosomal operon and like all slow growing myco-
bacterial species contains only one promoter to drive its
transcription [24]. We show that MAP inoculated into
media normally unsupportive of growth demonstrate a
decrease in ribosomal turnover which is preceded by a
proportionally larger decrease in culturability, suggesting
that starvation induces a loss in culturability before viabil-
ity. In conventional culture media we confirm the find-
ings of others [25] showing that ribosomal turnover rates
are not related to mycobacterial growth phase and further
show that in MAP this rate is relatively stable. One possi-
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Table I: Differentially regulated MAP genes after D157070 treatment

Fold Change

Gene Name p-value Day | Day3 Putative function MTB homologue

Upregulated

MAP0493c (acrR) 0.044 2.92 1.42 transcriptional regulator NS
MAP0494 0.011 3.37 1.66 hypothetical protein NS
MAP0495c 0.002 2.24 1.26 hypothetical protein Rv3572
MAP0496c 0.016 3.10 1.69 oxidoreductase Rv3571
MAP1369 (pks10) 0.044 243 1.77 polyketide synthase Rv1660
MAPI371 (pks8) 0.009 2.47 1.93 polyketide synthase Rv1662
MAPI1724c (yce)) 0.011 4.21 1.94 cytochrome like protein NS
MAP1725c (srpA) 0.021 5.02 2.81 catalase like protein NS
MAP2634c (smtA) 0.044 2.78 2.67 hypothetical protein Rvl147
MAP2635c (mmpl|3) 0.002 373 1.93 mmpL protein Rv1146/5
MAP2642 0.001 9.00 3.59 naringenin-chalcone synthase Rv1660
MAP2643 0.001 7.93 3.20 methyltransferase Rvl139c
MAP2644 0.001 4.90 223 oxidoreductase Rv1138c
MAP2940c (dxr) 0.016 2.49 243 reductoisomerase Rv2870c
MAP2941c 0.009 6.75 3.78 cytochrome C biogenesis protein Rv2877c
MAP2942c (mpt53) 0.031 743 3.07 Mpt53 Rv2878c
MAP3545 0.016 2.45 1.73 oxidoreductase Rv3230c
MAP3546 (desA3_2) 0.016 3.02 1.90 DesA3_2 Rv3229¢
MAP4201 (84) 0.018 2.60 1.53 RNA polymerase sigma-L factor Rv0735
MAP4202 (rslA) 0.019 2.50 1.59 hypothetical protein Rv0736
MAP4203 0.007 3.34 2.19 oxidoreductase NS
MAP4204 0.012 2.74 2.01 hypothetical protein Rv1888c
MAP4205 (UbiE) 0.002 3.94 2.25 methyltransferase NS
MAP4206c (lolC) 0.017 4.06 3.36 efflux ABC transporter NS
MAP4207c (loID) 0.003 5.91 2.77 ABC-type transporter NS
MAP4208 (ilvB) 0.002 6.93 3.40 acetolactate synthase Rv3740c
MAP4209 0.000 741 3.97 transcriptional regulator NS
MAP4210 (fabH) 0.005 7.04 424 3-oxoacyl-ACP synthase IlI Rv0533c
MAP421 | (pat) 0.003 6.19 4.82 histidinol-phosphate aminotransferase Rv3772

Downregulated

MAPI1553c (fadE14) 0.009 2.27 1.88 putative acyl-CoA dehydrogenase Rv1346
MAPI1554c (fadD33_2) 0.018 2.50 2.50 acyl-CoA synthase Rv1345
MAPI1555c 0.017 2.50 1.45 acyl carrier protein Rvl344
MAP1668c (katG) 0.016 2.50 1.8l catalase/peroxidase Rv1908c
MAP1996 (fabD) 0.022 1.92 0.76 malonyl CoA-acyl carrier protein Rv2243
MAP233 I c (acpS) 0.016 2.32 2.85 holo- [acyl-carrier-protein] synthase Rv2523c
MAP2332c (fas) 0.002 2.70 4.76 fatty acid synthase Rv2524c
MAP3177 0.018 2.70 222 hypothetical protein Rv3129
MAP3178c 0.016 3.12 1.12 hypothetical protein NS
MAP3179c 0.044 3.33 1.61 hypothetical protein Rv3134c
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Table I: Differentially regulated MAP genes after D157070 treatment (Continued)

MAP3272 0.027 2.70 1.22 pyridoxamine 5'-phosphate oxidase Rv3129
MAP3273c 0.027 3.22 1.63 hypothetical protein Rv3131
MAP3600 0.032 1.85 2.04 hypothetical protein Rv0166
MAP360| (fadD5) 0.006 243 4.00 acyl-CoA synthase RvO166
MAP3602 0.047 2.00 2.04 hypothetical protein RvO167
MAP3606 0.016 2.38 3.44 mce-family protein mcelc RvOI71
MAP3607 0.017 1.96 1.63 mce-family protein mceld Rv0172
MAP3671 0.009 2.70 1.96 transcriptional regulator Rv0232

Selected gene list with putative function predictions showing fold change of upregulated and downregulated operons (p < 0.05) of Day | D157070
treatment normalized to untreated control. Genes with homologues in MTB are indicated (NS = no significant homology).

ble indication from this is that the basal ribosomal turno-
ver in MAP is set at a level sufficient for essential protein
synthesis in the ground state but that there is a lag in ele-
vation of turnover in response to an increased demand
from divisional activity which thus acts as a limiting factor
on growth. Decreases below the basal turnover ratio (as
seen in these studies after prolonged starvation or antibi-
otic treatment) would thus represent a rate of transcrip-
tional activity insufficient to retain viability.

In accordance with previous observations [26,27] we
found that a bovine derived macrophage cell line was
fully permissive to MAP. Cell entry induced a transiently
higher rate of MAP division (increases in cfu and DNA lev-
els) than that observed in parallel conventional cultures.
Significantly the rate of ribosomal turnover varied only
minimally during the whole course of the infection con-
firming that the BOMAC cell line was unable to kill MAP
over the time interval of the study. In striking contrast,
ribosomal turnover in MAP increased sharply after initial
cell entry into human macrophages (THP1). In these acti-
vated cells MAP killing was expected and indeed as in
RPMI culture, both culturability and the total amount of
MAP DNA decreased at significantly different rates. This
indicated that despite being activated, THP1 cells were
only able to kill up to 50% of MAP cells after cell entry
with an increasing proportion of these (20%) becoming
viable non-culturable. These results suggest that MAP phe-
notypic responses to intracellular environments are
dependant on the degree of hostility encountered.
Increasing transcriptomic activity in hostile environments
may be envisaged as reflecting the deployment of MAP
derived survival mechanisms to de-activate host cell kill-
ing leading to the inhibition of MAP division but may also
signal the emergence of the non-culturable phenotype.

The introduction of D157070 into the three test systems
(BOMAC, THP1 and in vitro Culture) gave a varied
response. In extracellular in vitro conditions there was no
observable effect on either culturability or ribosomal turn-

over suggesting that this agent does not act directly on
MAP viability. The lack of bacteriostatic or bacteriocidal
activity is consistent with previous studies showing that
dlaT gene functionality is not essential for mycobacterial
viability or growth in nutrient rich conventional media
[17]. MAP growing exponentially in culture medium
showed differential transitional transcriptional profiles
on treatment with D157070 that were sustained for up to
3 days. This included 63 genes clustered in 8 up-regulated
operons and 7 down-regulated operons. Previous studies
have suggested that D157070 binds with the dihydrol-
ipoamide transferase DlaT, probably on the surface of the
mycobacterial cell and that this leads to alterations in
AhpC functionality through a cascade involving the genes
AhpD and LpdA [16]. Binding to MAP cells was indeed
evident because treated MAP cultures retained the pig-
ment associated with the agent. However none of the dif-
ferentially transcribed genes observed in this study could
be related to AhpC activation. Putative functions of the
genes observed to be upregulated were mostly those asso-
ciated with lipid metabolism and membrane transport
mechanisms. Some were also linked to operons known to
under the control of the global transcription regulator 8-
which is an important regulator of cold stress in other
organisms [28,29]. Interestingly, o' regulated genes have
been related to virulence in MTB [18,19,30] and intracel-
lular infection in MAP [31]. Genes that were down regu-
lated included the mcel operon, shown to be involved in
mycobacterial growth control [32] and katG associated
with oxidative stress and intracellular persistence [33].
The means by which these regulatory changes occur are
unknown but they could be the result of alternative mech-
anisms of action of D157070 other than through AhpC.
The action of D157070 on 8" controlled lipid and cell wall
synthesis in MAP could alter host cell recognition. The
reduction in expression of several genes associated with
virulence and persistence in mammalian cells may also
represent a direct influence of D157070 on the capacity of
MAP for intracellular survival.
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Figure 2

Prel 6Sr DNA copy number, Culture (cfu), and Viability curves of MAP K10 in BOMAC. MAP K10 growth curves
(average of three experiments) infected into BOMAC cell line at MOI |:1 with or without D157070 treatment plotted as A)
copies of prel6Sr DNA B) colony forming units C) prel6Sr RNA/DNA ratio.

Significantly D157070 was active against MAP in both
BOMAC and THP1 cell lines. Both culturability and ribos-
omal turnover decreased significantly compared with con-
trols. In BOMAC cells, whilst total MAP prel6Sr DNA
increased up to Day 2, the culturability did not and MAP
ribosomal turnover began to drop significantly after Day
1. This delay probably reflects the initial unactivated state
of the cell line and represents the need of the cell to initi-
ate RN related killing processes. In THP1 cells, killing was
already evident at Day 1 and both culturability and total
MAP prel6Sr DNA fell proportionally. However the clear-
ance of MAP from cells in response to D157070 as meas-
ured by the total MAP prel6Sr DNA was significantly
greater than by THP1 cells alone. In addition, the ribos-
omal turnover showed a steady and significant decrease

throughout the time course of the experiment. This is
indicative of enhanced killing by the activated cells and
probably indicates that D157070 was able to prevent
MAP from blocking intracellular killing processes. The
parallel decrease in both total DNA and cfu observed in
these experiments also suggests that MAP invasion into
cells treated with D157070 did not convert to the uncul-
turable phenotype.

Conclusions

We have developed culturability and viability assays
which demonstrate that D157070 initiated enhanced host
directed killing of intracellular MAP by host cells.
D157070 was well tolerated by host cells and its activity
was independent of the need for intracellular MAP growth
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Prel6Sr DNA copy number, Culture (cfu), and Viability curves of MAP K10 in THPI. MAP K10 growth curves
(average of three experiments) infected into THPI cell line at MOI I:1 with or without D157070 treatment plotted as A) cop-
ies of prel6Sr DNA B) colony forming units C) prel6Sr RNA/DNA ratio.

or the pre-activation of host cell killing mechanisms.
D157070 was readily associated with cultured MAP cells
but showed no direct anti-MAP activity in conventional
extracellular culture. In culture, MAP exhibited transcrip-
tional responses to exposure to D157070 but these were
not associated with genes linked to the MAP AhpC oxida-
tion/reduction cascade. This is not in conflict with the pre-
viously proposed mechanism of action but suggests that
D157070 may have alternative or complementary mecha-
nisms of action in the intracellular environment other
than through AhpC inactivation

This rhodanine agent represents a novel approach to anti-
MAP chemotherapy that is active against both dividing
and dormant intracellular infection. Further studies in

animals are now required to investigate possible toxicity
issues and the efficacy of clearance in chronic models of
infection. This type of approach offers a promising poten-
tial as therapy for chronic low load MAP infections in
humans.

Methods

Accelerated MAP culture by microaerophilic thin layer
colony counting

The thin layer method was developed to avoid using
highly oxygenated conventional solid media that previ-
ously had produced variable colony counts from liquid
media possibly influenced by clumping. The new method
was less likely to dry out than conventional plates and
provided a microaerophilic environment enveloping the
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bacteria with growth media which allowed discrete colony
formation that facilitated counting of micro-colonies by
microscopy. Culture media consisted of 9 mls of RAF base
medium (d-L asparagine 5 g/l, potassium dihydrogen
phosphate 2 g/l, magnesium sulphate. 7H,O 1 g/l, tri-
ammonium citrate 2 g/l, sodium chloride 2 g/1, D-glucose
10 g/, ammonium iron (III) citrate brown 75 mg/l, glyc-
erol 0.5% (w/v), Mycobactin J 2 mg/l: adjusted to pH 5.7)
supplemented with 1.5% agar noble, 10% foetal bovine
serum (inactivated), 25 pg/ml Amphotericin B, 100 pg/ml
Naladixic acid, 100 pg/ml Vancomycin set in 25 cm? tis-
sue culture flasks (Nunc, UK) with non filtered caps. Sam-
ples of MAP preparations were serially diluted to a final
volume of 1 ml RAF base medium then rapidly mixed
with 1 ml of warm RAF base medium plus 1.5% agar
maintained in a 45 °C water bath and pipetted over the set
RAF basal layer. Caps were made air tight and cultures
incubated at 37°C. Colony counts were made at 14 days
and 28 days using an inverted microscope (200 x magni-
fication). Preparation of MAP samples from culture were
made by centrifuging at 4,000 xg for 10 mins. Cell lines
containing MAP were initially treated for 1.5 hrs with
Amikacin (200 pg/ml) to kill extracellular MAP, washed
briefly in PBS then, separated by differential cell lysis for
1 minute in 1% SDS in 50 mM Hepes: 0.05% Nonidet
P40 buffer, 1 U Benzonase (Cat:70746-3, VWR, UK) fol-
lowed by centrifugation as above.

Quantitation and viability assays using prel6Sr DNA and
prel 6Sr RNA

Viability was determined using a RNA/DNA copy ratio of
a MAP genomic region immediately preceding the single
copy ribosomal operon, referred to here as pre16Sr. This
genomic region was chosen because maintenance of
ribosomal renewal is essential in both latent and growing
cells [34]. In addition, the prel6Sr region is cleaved dur-
ing ribosome assembly expression and is thus constitu-
tively expressed but transiently retained [25,35]. DNA and
RNA were extracted from equal aliquots of pelleted MAP
sample preparations as described above. For DNA extrac-
tion, MAP were resuspended in 600 ul MLB buffer (440
mM NacCl, 1% SDS, 10 mM TrisHCI, 1 mM EDTA pH 8.0),
lysed by mechanical disruption at 6.5 ms! in a bead B
matrix (Qbiogene, UK) for 50 secs, briefly iced, extracted
with a standard Phenol/chloroform protocol, washed in
70% ethanol, precipitated with sodium acetate and 100%
ethanol and resuspended in RNAse/DNAse free water.
MAP samples for RNA extraction were resuspended in 600
pl MELB buffer (1% 2-mercaptoethanol, 440 mM NaCl,
1% SDS, 10 mM TrisHCI, 1 mM EDTA pH 8.0), then lysed
by mechanical disruption at 6.5 ms'! in a bead B matrix
(Qbiogene, UK) for 50 secs, briefly iced, extracted with
Trizol/chloroform, precipitated with 80% volume isopro-
panol at -80°C for 1 hour, washed in 70% ethanol then
resuspended in RNAse/DNAse with 2 U DNAse I (Invitro-
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gen, UK) for 30 mins at 37°C. This was followed by a sec-
ond  Trizol/chloroform  extraction, isopropanol
precipitation at -80°C for 1 hour, washing in 70% ethanol
and resuspension in DNAse/RNAse free water. cDNA
preparations for qPCR reactions were generated using a
Superscript Il polymerase kit (Invitrogen, UK) according
to the manufacturers instructions. All qPCR's consisted
12.5 pl Power SYBR green mastermix (Applied Biosys-
tems, Cat 4368706), 1 pl primer mix (2 pMoles
prel6SIRNA.R  GCGCAGCGAGGTGAATTT, 2 pMoles
prel6SIRNA.F  TITGGCCATACCTAGCACTCC), 9.5 ul
H,O and 2 pul DNA or ¢cDNA sample per reaction mix,
cycling at 1 cycle at 95°C:15 mins; 40 cycles at 95°C:30
secs, 58°C: 1 min, 72°C:1 min with data collection at
76°C (10 secs) in a Mx3000P qPCR cycler (Stratagene,
UK). Sample copy numbers were estimated by using a
dilution curve of a control stock total genomic DNA MAP
K-10 preparation serial diluted to contain between 1 x 10°
and 100 pre16Sr RNA copies.

MAPAC Microarray

Parallel inoculums of MAP-K10 were made into RAF
medium plus 5 uM D157070 and sampled at 1 and 3
days. Three independent replicate experiments performed
and the control untreated cultures received DMSO only
(solvent for D157070). Total MAP RNA was differentially
extracted as described above, cDNA generated, labelled
and hybridized as previously described onto individual
MAPAC arrays for each sample along with a stock MAP
K10 genomic DNA control labelled with a separate dye to
normalize signal strengths in a common reference design.
MAPAC microarray analysis was performed to derive MAP
transcriptomic profiles of each time point. Statistical anal-
ysis of the gene expression profiles at each time point
identified differentially expressed genes that were up or
down-regulated significantly greater than 2 fold at day 1
after treatment relative to a normalized untreated control
data set.

Briefly, 1.5 pug of DNA control was labelled by random
priming with Klenow polymerase to incorporate Cy3
dCTP and 3 pg of cDNA sample was labeled by random
priming with SuperScript reverse transcriptase with Cy5
dCTP (GE Healthcare) using standard protocols [36]. Cy3
and Cy5 labelled samples were co-purified through a Qia-
gen MinElute column (Qiagen), mixed with a formamide-
based hybridization solution (1x MES, 1 M NaCl, 20%
formamide, 0.02 M EDTA, 1% Triton) and denatured at
95°C for 2 min. The labeled sample was loaded on to a
prehybridised (3.5x SSC, 0.1% SDS, 10 mg/ml BSA)
microarray under two 22 x 22 mm LifterSlips (Erie Scien-
tific, UK), sealed in a humidified hybridization cassette
(Corning) and hybridised overnight by immersion in a
water bath at 55°C for 16-20 h. Slides were washed once
in 400 ml 1x SSC 0.06% SDS at 55°C for 2 min and twice
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in 400 ml 0.06x SSC for 2 min. Microarrays were scanned
using an Affymetrix 428 scanner, and signal intensity data
were extracted using BlueFuse for Microarrays v3.5
(BlueGnome, Cambridge UK). The intensity data was fur-
ther post-processed using BlueFuse to exclude both con-
trols and low confidence data (p < 0.1) prior to
normalisation using global median centering. Further
analysis of the normalised data was undertaken using
GeneSpring 7.3.1 (Agilent Technologies). Averaged nor-
malised data from each of the 3 separate biological repli-
cates were further analysed to select genes with significant
changes in gene expression in response to D157070 treat-
ment. One-way ANOVA, with a p-value cut-off of 0.05
and including Benjamini and Hochberg False discovery
rate correction, was applied to those genes showing a
greater than 2-fold change in expression. This identified
genes with a significant increase or decrease at Day 1 or
Day 3 after treatment compared to untreated controls.
Fully annotated microarray data have been deposited in
BuG@Sbase (accession number E-BUGS-92; http://
bugs.sgul.acuk/E-BUGS-92) and also ArrayExpress
(accession number E-BUGS-92).

Activity of D157070 on extracellular MAP cultures

MAP strain K-10 (ATCC BAA-968) was grown into expo-
nential growth phase (approximately 4 weeks) in RAF lig-
uid culture then inoculated into either liquid RAF
medium or a tissue culture medium unable to support
MAP growth (RPMI). Cultures were treated at time 0 with
either an antibiotic (Amikacin), D157070 dissolved in
DMSO, or DMSO alone as a control. Samples were taken
in triplicate at 0, 1, 2, 4 and 7 days post treatment and
investigated for the number of mycobacterial cells (cfu)
and their viability using the method described above.

Activity of D157070 on intracellular MAP

MAP K-10 was infected into non-activated bovine macro-
phage (BOMAC) and activated human macrophage cell
lines (THP1) at an MOI of 1:1. Experiments were per-
formed in triplicate and samples were assayed for cfu and
viability from day 0, 1, 4 and 7 in THP1 cells and Day 0,
1, 2 and 3 in BOMAC cells. Test infected cells were treated
with 5 uM D157070 which was replaced every 48 hrs in
fresh culture medium. Parallel sets of non-infected cells
treated with D157070 showed no toxicity over the test
period.
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