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to human health. Although many factors could affect the 
immunogenicity of a vaccine and thus its effectiveness, 
there is increasing evidence from clinical studies and 
animal models that the composition and function of the 
gut microbiota are key factors that regulate the immune 
response to vaccination [2].

Human gastrointestinal microbiota is composed of 
complex communities of bacteria, viruses, archaea, and 
fungi, which affect human health throughout the whole 
life by maintaining gastrointestinal homeostasis, regulat-
ing immune system development, metabolizing nutri-
ents, and preventing pathogen colonization [3]. Gut 
microbiota could also act as a natural adjuvant, regulate 
host immune responses, and carry epitopes that are simi-
lar to vaccine antigens to induce cross-reaction and other 
ways to affect vaccine efficacy [1].

In this review, we summarized the evidence that the gut 
microbiota affected vaccine response and discussed the 
possible mechanisms of how the gut microbiota affected 
vaccine immunogenicity and provided new strategies for 
targeting the gut microbiota to optimize vaccine efficacy.

Introduction
Vaccine is the most effective measure to prevent com-
municable diseases, which could significantly reduce 
the morbidity, severity, and mortality of diseases, as well 
as the use of antibiotics and the emergence of antibi-
otic resistance [1]. However, vaccine-induced immune 
responses vary widely between individuals and popu-
lations in different regions of the world [1]. Therefore, 
understanding the mechanism of this variation is critical 
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Influence of gut microbiota on vaccine efficacy
The composition of the gut microbiota varies widely 
between individuals, which correlates with differences in 
vaccine immunogenicity [1]. we assessed evidence from 
animal models and clinical studies to show that the com-
position and function of the gut microbiota were factors 
associated with variation in vaccine response, as detailed 
in Table 1.

Related studies from animals
Data from animal models suggest that gut microbiota 
plays an important role in modulating vaccine efficacy. 
For example, the gastrointestinal homeostasis of vanco-
mycin-treated mice and rhesus monkeys was disrupted, 
which was associated with reduced serum levels of anti-
gen-specific immunoglobulin (Ig) G following subse-
quent parenteral vaccination. Restoration of microbial 
diversity before vaccination could prevent vancomycin-
induced hyporesponsiveness to vaccines. RNA-sequenc-
ing analysis of the small intestine, spleen, whole blood, 
and secondary lymphoid organs of vancomycin-treated 
mice revealed that the loss of Lactobacillus, Rumino-
coccus, and Clostridiaceae had significant effects on the 
immune system and correlated with mild inflammatory 
features [4]. Another study found that mice exposed 
to ampicillin and neomycin during infancy had signifi-
cantly impaired antibody responses to five different live 

or adjuvanted vaccines used by infants around the world, 
and the impaired antibody responses could be rescued 
by fecal microbiota transplantation from age-matched 
ampicillin- and neomycin-non-treated mice [5]. Yitbarek 
A et al. found that chickens treated with an antibiotic 
cocktail (vancomycin and neomycin and metronida-
zole and amphotericin) had a similar phenomenon after 
being inoculated with a fully inactivated H9N2 subtype 
avian influenza virus vaccine: antibiotic-treatment chick-
ens had reduced serum titers of H9N2-specific IgM and 
IgG, and normal antibody levels were restored after fecal 
microbiota transplantation from healthy chickens [6]. 
Nadeem, S. et al. induced intestinal dysbiosis in mice 
by administering a broad-spectrum antibiotic cocktail 
(amphotericin B and trimethoprim and polymyxin B and 
vancomycin and carbenicillin), and monitored the gen-
erated long-lasting memory T cells amount after vacci-
nating Bacillus Calmette-Guerin Vaccine (BCG), which 
could reflect the effect of BCG efficacy. It was found 
that gut dysbiosis significantly reduced the activation 
of CD4 + and CD8 + T cells in the lungs of mice, as well 
as the ratio of memory CD4 + and CD8 + T cells in the 
lungs and secondary lymphoid organs, and suppressed 
the proliferation and secretion of interferon-γ and tumor 
necrosis factor (TNF)-α by mycobacterium (M.) tubercu-
losis-specific T cells, hindered the clearance of M. tuber-
culosis in vaccinated mice, increasing M. tuberculosis 

Table 1 Effect of gut microbiota on vaccine efficacy
model host vaccine gut microbiota associated with vaccine efficacy reference
Animal
models

Mice Ovalbumin Lactobacillaceae, Rumen family, and Clostridium bacteria were associated with vaccine efficacy [4]

Mice RVV The abundance of Clostridium and Lactonemae was positively correlated with vaccine efficacy [9]

Clinical 
studies

Ghanaian and 
Dutch infants

RV Rotavirus vaccine responders in Ghana and the Netherlands were associated with an increased 
abundance of Streptococcus Bovis and decreased abundance of Bacteroides phylum; Ghanaian 
nonresponders had an increase in enteric streptococci and a decrease in Bacteroides

[10]

Pakistani and 
Dutch infants

RV Pakistani responders were associated with increased Streptococcus Bovis abundance and de-
creased Bacteroides phylum abundance

[11]

Ghanaian 
infants

RV Phage diversity and the presence of enterovirus B and multiple novel co-viruses were inversely 
correlated with vaccine efficacy

[12]

Nicaraguan 
infants

RV Proteus and Egella abundance were positively correlated with vaccine efficacy, and Fusobacte-
rium and Enterobacteriaceae were negatively correlated with vaccine efficacy

[14]

Rural Zimba-
bwe infants

RV Bacteroides multiforme was associated with serum anti-rotavirus IgA titer [15]

Bangladeshi
infants

BCG
TTV
HBV
OPV

The abundance of Bifidobacterium longum subspecies was positively correlated with OPV, BCG, 
TTV, and HBV efficacy; Clostridium, Enterobacteriaceae, and Pseudomonas abundance were 
inversely correlated with vaccine efficacy

[16]

New Hamp-
shire infants

TTV Bifidobacteria abundance was negatively correlated with vaccine efficacy, and the abundance 
of CDP-diacylglycerol biosynthesis pathway-associated species was positively correlated with 
vaccine efficacy

[17]

HongKong 
adults

SARS-CoV-2 
vaccine 
(Coro-
naVac and 
BNT162b2)

Bifidobacteria abundance was positively correlated with CoronaVac vaccine efficacy; Bacteria 
rich in flagella and fimbriae were positively correlated with the efficacy of the BNT162b2 vaccine; 
Individuals with fewer adverse events after vaccinating any of the two vaccines were enriched 
with large amounts of Copriprevoria and two Megamonas

[18]

RVV, rabies virus vaccine; OPV, oral polio vaccine; BCG, Bacillus Calmette-Guerin;

RV, rotavirus vaccine; TTV, tetanus toxoid vaccine; HBV, hepatitis B vaccine.
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colony-forming units in the lungs and spleen [7]. Twelve 
strains of lactic acid bacteria isolated from badger feces 
reduced the immune efficacy of BCG by inhibiting BCG-
induced activation of the pro-inflammatory transcription 
factor NF-κB in macrophages [8]. Zhang, Y. et al. found 
that mice treated with a broad-spectrum antibiotic cock-
tail (ampicillin and metronidazole and neomycin and 
vancomycin) before vaccinating rabies vaccine, would 
decrease the serum titers of rabies virus-specific IgM and 
IgG, and virus-neutralizing antibody, and the amount 
of T follicular helper cells, germinal center B cells, and 
plasma cells in lymph nodes. Treatment with vancomy-
cin alone had similar impairing effects on the humoral 
immune response compared with treatment with a 
broad-spectrum antibiotic cocktail. These studies sug-
gest that antibiotic-driven dysbiosis of the gut microbiota 
suppresses the immune response to vaccination.

Related research from humans
To explore the impact of gut microbiota on vaccine 
response in humans, Ghana, Pakistan, the Netherlands, 
India, Malawi, the United Kingdom(UK), Nicaragua, 
Zimbabwe, Bangladesh, and other countries studied the 
correlation between the abundance of certain bacterial 
families, genera, and species in the gut and the human 
immune response to vaccines. In Ghanaian and Paki-
stani infants following oral rotavirus vaccine (ORV), the 
gut microbiota of Ghanaian and Pakistani with well ORV 
vaccination responses was more similar to that of Dutch 
infants (increased abundance of Streptococcus Bovis 
and Proteus Bacteroidetes, and decreased abundance of 
Bacteroidetes), while Ghanaian infants with poor ORV 
vaccination responses had increased enteric Streptococ-
cus and decreased Bacteroides. And the phage diversity 
and the presence of enterovirus B and multiple novel 
co-viruses were also inversely correlated with Ghanaian 
infants’ ORV seroconversion ratio [10–12]. Increased 
gut microbiota diversity was inversely associated with 
ORV immunogenicity in infants from India and Malawi, 
who had significantly lower rates of rotavirus shed-
ding and seroconversion than those in the UK [13]. In 
Nicaragua, infants who responded to ORV had a higher 
abundance of Proteus and E. fergusonii, whereas non-
responders had a higher abundance of Fusobacteria and 
Enterobacteriaceae [14]. Polymorpha was the only spe-
cies associated with serum anti-rotavirus IgA titers in 
rural Zimbabwe [15]. Similar findings have been made in 
other vaccine studies that the gut microbiota influences 
vaccine efficacy. A study in Bangladeshi infants showed 
that the abundance of gut actinomycetes, especially Bifi-
dobacterium longum subspecies, was associated with 
the high immune responses of oral polio vaccine as well 
as parenteral vaccines such as BCG, tetanus toxoid vac-
cine, and the hepatitis B virus vaccine, which manifested 

as positively correlated with the T cell response, and the 
number of CD4 + T cells, and the serum titers of vaccine-
specific IgG and IgA after vaccinating 2 years, while the 
low vaccine responses were associated with the high 
abundance of Clostridium, Enterobacter and Pseudo-
monas spp [16]. This indicates that the gut microbiota is 
not only related to the immune response to the vaccine 
but also associated with the persistent immune response 
induced by the vaccine. A clinical cohort study from 
New Hampshire about the tetanus toxoid vaccine found 
that the relative abundance of Bifidobacteriaceae was 
inversely correlated with the specific antibody response 
induced by the tetanus toxoid vaccine, whereas the CDP-
diacylglycerol biosynthetic pathway-related species 
abundance was positively correlated with specific anti-
body responses induced by tetanus toxoid vaccine [17]. 
Recently, a study about the SARS-COV-2 vaccine found 
that the immune response of CoronaVac recipients was 
significantly lower than that of the BNT162b2. Recipients 
with high serum titers of neutralizing antibodies to the 
CoronaVac had abundant Bifidobacterium, while recipi-
ents with high serum titers of neutralizing antibodies 
to the BNT162b2 were rich in bacteria with flagella and 
fimbriae in the gut. Recipients with fewer adverse events 
after vaccinating any of the two vaccines were enriched 
with large amounts of Copriprevoria and two Megamo-
nas [18]. In addition, Tang, B. et al. found that the com-
position and function of gut microbiota were associated 
with BBIBP-CorV vaccine response: Short-chain fatty 
acids metabolized in the gut were positively correlated 
with antibody responses [19]. The above studies identi-
fied specific gut microbiota associated with improved 
immune responses to vaccines, providing evidence for 
targeting the gut microbiota to improve vaccine efficacy. 
Gut microbiota is not only a key factor that causes dif-
ferences in immune responses to the same vaccine in 
different countries and regions but also an important 
factor that affects the different immune efficacy of the 
same individual to different types of vaccines. Therefore, 
targeting gut microbiota to optimize vaccine efficacy 
requires stratification according to different populations, 
and specific vaccines also require specific microbiota.

Gut microbiota affects vaccine efficacy by 
modulating the immune responses
Molecules carried or derived from gut microbiota could 
regulate host immune responses by acting as innate 
immune adjuvants or inducing cross-immunity, thereby 
affecting vaccine efficacy [20].

Natural immune adjuvants
The effects of vaccines are mediated by the induction of 
antigen-specific immune responses, however, vaccine 
antigens themselves are usually poorly immunogenic, 



Page 4 of 7Huang et al. Gut Pathogens           (2023) 15:27 

thus requiring adjuvants to obtain an adequate immune 
response. Adjuvants could enhance immunogenicity and 
vaccine efficacy [1]. Parenteral and mucosal (oral) vac-
cines require different types of adjuvants, and choos-
ing an appropriate adjuvant is critical as it could greatly 
affect the long-term protective efficacy of the vaccine. 
It has been shown that the gut microbiota is a constant 
source of natural adjuvants that could affect vaccine effi-
cacy. For example, trivalent inactivated influenza vac-
cine-specific antibody titers and plasma cell frequencies 
in peripheral blood were reduced in germ-free or anti-
biotic-treated mice following the vaccination of human 
trivalent inactivated influenza vaccine, whereas rebuild-
ing the gut microbiota by oral a flagella-containing E. 
coli would restore the vaccine efficacy. The mechanism 
was that binding of bacterial flagellin to Toll-like recep-
tor (TLR) 5 induced macrophages to secrete interleukin 
(IL)-6, proliferation-inducing ligand, and TNF-α, result-
ing in increased plasma cell differentiation. TLR5-medi-
ated microbiota sensing also affected antibody responses 
to the inactivated polio vaccine, but not the adjuvanted 
vaccine and live-attenuated yellow fever vaccine [21]. 
After the oral cholera vaccine, individuals with higher 
intestinal Clostridium abundance and lower Enterobacte-
riaceae abundance were more likely to enhance IgG- and 
IgA-secreting memory B-cell responses, which targeting 
the O-specific polysaccharide of Vibrio cholera. And the 
levels of IL-1β and IL-6 secretion by fecal-induced mac-
rophage from higher memory B-cell response individuals 
were significantly different from those in less respon-
sive individuals [22]. Stražar, M. et al. found that the gut 
commensal bacteria Rothia might inhibit the production 
of BCG-induced non-specific immune cytokines IL-6, 
IL-1β, and TNF-α by affecting phenylalanine metabolism, 
while Eggertia positively correlated with BCG-induced 
specific T cell-mediated memory responses [23]. These 
studies suggest that the gut microbiota influences the 
immune response to vaccines and is a good source of nat-
ural immune adjuvants.

Regulation of immune system development and immune 
response
The early-life gastrointestinal microbiota is critical for 
the development and maturation of the infant’s mucosal 
and systemic immune systems [3]. For example, germ-
free mice had low levels of IgA in serum and intestinal, 
reduced numbers of IgA-producing plasma cells, and 
dysplasia of Peyer’s plaques. However, when germ-free 
mice were colonized with commensal bacteria, IgA pro-
duction would reach normal levels [24]. In germ-free or 
antibiotic-treated mice, in addition to the reduction of 
the number of IgA-producing cells, the number of phago-
cytes and antigen-presenting cells (such as dendritic 
cells, macrophages, and neutrophils) was also reduced, 

and with insufficient T cell differentiation, suggesting 
that these cells also require the stimulation of commensal 
bacteria [24]. Riboflavin derivatives produced by Bifido-
bacterium, Bacteroides thetaiotaomicron, Lactobacillus 
casei, and Enterobacter cloacae activated mucosa-associ-
ated T cells through restricted major histocompatibility 
complex-associated protein-1 [25]. In addition, short-
chain fatty acids produced by gut bacterial metabolism 
could pass through the bloodstream, induce immune 
cell development in the bone marrow, and affect lung 
immune responses [26]. Segmented filamentous bac-
teria attached to the epithelial cells of the lower small 
intestine could not only stimulate IgA response, but also 
activate lamina propria dendritic cells and macrophages 
to secrete IL-1β, IL-6, and IL-23, and induce the genera-
tion of intestinal mucosal specific Th17 cell population, 
which has the potential to differentiate into RORgt subset 
cells [27]. Microbe-specific T cells could provide tailored 
signals to follicular B cells in gut-associated lymphoid 
tissue, thereby enhancing diversification and selective 
isotype switching [28]. This could be effectively com-
bined with a vaccine to boost anti-pathogen antibody 
responses. These studies demonstrated that gut-specific 
microbiota and their derivatives could regulate immune 
system development and immune responses, and target-
ing microbiota has the potential to improve host immune 
responses.

Carrying vaccine-like epitopes to induce cross-immunity
Gut microbiota could adversely affect vaccine efficacy by 
biasing antibody responses toward nonprotective vac-
cine antigens which are similar to commensal bacterial 
antigens. For example, cross-reactivity of pre-existing 
specific memory T and B cells for the human immuno-
deficiency virus (HIV)-1 envelope (Env) glycoprotein 
with gut commensal antigens might lead to antibody 
targeting gp41, which was a nonprotective epitope of 
HIV, thereby reducing the efficacy of HIV vaccine [29]. 
Therefore, altering the existing gut microbiota in the 
infant might have a beneficial effect on B cells to elicit a 
more functional anti-HIV antibody response. Studies on 
SARS-COV-2 vaccines also found that microbial proteins 
derived from human and mice gut commensal bacteria 
(such as heat shock protein 60 and heat shock protein 70 
derived from Escherichia coli) were similar to the linker 
domain (1147- SFKEELDKYFKNHT-1160, P144) of the 
SARS-COV-2 protein S2, which induced reactive mono-
clonal antibodies could bind to S2 and P144. Mice with 
pre-existing high levels of S2 cross-reactive antibod-
ies produced higher S protein-specific binding antibod-
ies, especially antibodies against S2, after immunization 
with the SARS-COV-2  S DNA vaccine. Similarly, pre-
existing S2- and P144-specific antibody levels were posi-
tively correlated with receptor-binding domain-specific 
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antibody titers after vaccinating two doses of inactivated 
SARS-COV-2 vaccine in humans [30]. These studies sug-
gested that gut microbiota could affect vaccine efficacy 
by inducing cross-immunity by carrying vaccine-like 
epitopes.

Targeting the gut microbiota to modulate vaccine 
efficacy
Studies in humans had shown an association between 
better vaccine responses and specific bacterial taxa. 
These associations varied with different vaccine strate-
gies, and modulation of gut microbiota through mea-
sures such as antibiotics, probiotics, engineered bacteria, 
etc. was considered an important way to enhance vaccine 
effectiveness [20].

Antibiotics
Modulation of gut microbiota by antibiotics has a major 
impact on vaccine response. A randomized controlled 
clinical trial compared the effect of healthy adults ran-
domized to broad-spectrum (vancomycin and ciprofloxa-
cin and metronidazole), narrow-spectrum (vancomycin), 
or no antibiotics on the immune response to ORV. It was 
found that although the antibiotics did not change the 
absolute titers of anti-rotavirus IgA in the receptors sera, 
in the narrow-spectrum group, the immunogenicity of 
ORV was enhanced on day 7 after vaccination. In addi-
tion, antibiotics increased the fecal shedding of rotavirus, 
while also rapidly altering the diversity of gut bacteria. 
On day 7 post-inoculation, members of the Bacteroides 
phylum, especially Prevotellaceae, could serve as specific 
bacterial taxa to distinguish ORV enhancers from rota-
virus shedders [31]. This study demonstrated that gut 
microbiota modification altered immune responses to 
ORV and supported further exploration of gut microbi-
ota manipulation to enhance ORV immunogenicity.

Probiotics
Beneficial modulation of the gut microbiota is an effec-
tive strategy to improve the efficacy of vaccine-induced 
immunity. For example, oral administration of Lac-
tobacillus Plantarum strain GUANKE could increase 
the serum level of neutralizing antibodies and cellular 
immune responses after intramuscular injection of the 
SARS-CoV-2 DNA vaccine in mice [32]. The addition of 
Bacillus subtilis spores to an intramuscular vaccine for-
mulation of inactivated avian influenza virus resulted in 
enhanced H9N2 virus-specific antibody(IgG) responses 
[33]. The combined use of Bacillus subtilis and the live 
coccidiosis vaccine could enhance the efficacy of the live 
coccidiosis vaccine, prevent poultry coccidiosis, improve 
broiler production, and prevent Eimeria infection [34]. 
A new vaccine using Enterococcus faecium as a bac-
terial vector carrying oral influenza antigens induced 

antigen-specific antibodies and protected mice from 
lethal H1N1 infection [35]. At 4 months of age, infants 
given an enhanced formula to promote the growth of 
intestinal Bifidobacteria showed enhanced oral polio 
vaccine-specific responses after vaccination, and the per-
centage of bifidobacteria in the gut microbiota was posi-
tively correlated with poliovirus IgA titers [36]. Adding a 
probiotic mixture (Lactobacillus Plantarum and Bifido-
bacterium animal and Bifidobacterium longum infantis) 
to the influenza vaccine, elderly receptors had enhanced 
total antioxidant capacity, increased β-defensin levels, 
and increased the abundance of health status-related 
gut microbiota [37]. Mice supplemented with prebiotic 
lactosaccharide 2’-fucosyllactose and a complex mixture 
of immunomodulatory prebiotic short-chain galactooli-
gosaccharides and long-chain fructooligosaccharides 
in early life improved the specific antibody response of 
male mice to trivalent inactivated influenza vaccine [38]. 
These findings suggest that the incorporation of probiotic 
strains into vaccine components or modulation of the 
abundance of beneficial bacteria in the gut through pre-
biotics could enhance the immune efficacy of vaccines.

Engineering bacteria
A growing body of research has shown that gut micro-
biota is important for both mucosal immunity and sys-
temic immune responses to pathogens and oral vaccines. 
Oral vaccines that deliver human papillomavirus surface-
anchored antigens through genetically modified lactic 
acid bacteria-induced stronger systemic and mucosal-
specific cytotoxic immune responses, reducing human 
papillomavirus infection, and thus reducing the incidence 
of cervical cancer [39]. This experiment showed that the 
modified lactic acid bacteria could serve as mucosal vac-
cine carriers and could improve the immune efficacy of 
the delivered vaccines.

Summary and outlook
Gut microbiota could act as a highly adaptable tissue-
specific adjuvant to modulate immune responses and 
affect the immunogenicity and efficacy of vaccines. Tar-
geting gut microbiota has been considered an important 
strategy to improve vaccine effectiveness. But current 
research on gut microbiota’s impact on vaccine efficacy 
has been largely cross-sectional, linking microbiota to 
vaccine response only at a certain point in time. Over 
time, the composition of the gut microbiota under-
goes large changes in response to environmental expo-
sures. Therefore, more longitudinal studies are needed 
to better assess the impact of gut microbiota on vaccine 
response. In the context of future vaccine trials, it might 
be important to stratify individuals according to their gut 
microbiota profile and metabolism, as well as the influ-
ence of host genetics. The current approach to vaccine 
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development and its administration requires a major 
shift. For example, future vaccines could be designed 
to include specific immune-modulating probiotics to 
compensate vaccine recipients whose guts lack essential 
immune-stimulating microbes.
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